primitive recursive equality - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

primitive recursive equality - translation to ρωσικά

FUNCTION THAT CAN BE COMPUTED WITH LOOPS OF BOUNDED LENGTH
Primitive recursive; Primitive recursive functions; Primitive recursion; Primitive recursive fuctions

primitive recursive equality      
примитивно рекурсивное равенство
primitive recursive equality      

математика

примитивно рекурсивное равенство

primitive recursive         

общая лексика

примитивно-рекурсивный

Ορισμός

primitive
1.
Primitive means belonging to a society in which people live in a very simple way, usually without industries or a writing system.
...studies of primitive societies.
ADJ: usu ADJ n
2.
Primitive means belonging to a very early period in the development of an animal or plant.
...primitive whales...
It is a primitive instinct to flee a place of danger.
ADJ
3.
If you describe something as primitive, you mean that it is very simple in style or very old-fashioned.
It's using some rather primitive technology.
? sophisticated
ADJ

Βικιπαίδεια

Primitive recursive function

In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined before entering the loop). Primitive recursive functions form a strict subset of those general recursive functions that are also total functions.

The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive. For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. It is hence not that easy to devise a computable function that is not primitive recursive; some examples are shown in section § Limitations below.

The set of primitive recursive functions is known as PR in computational complexity theory.

Μετάφραση του &#39primitive recursive equality&#39 σε Ρωσικά